
Slony- I
A replication system for PostgreSQL

Concept

Jan Wieck

Afilias USA INC.
Horsham, Pennsylvania, USA

ABSTRACT

This document describes the design goals and technical out-
line of the implementation of Slony-I, the first member of a new
replication solutions family for the PostgreSQL ORDBMS.

Slony-I -2- Version 1.0

Table of Contents

1. Design goals . i
1.1. Master to multiple cascaded slaves i
1.2. Hot installation and configuration ii
1.3. Database schema changes ii
1.4. Multiple database versions ii
1.5. Backup and point in time recovery iii
2. Technical overview iii
2.1. Nodes, Sets and forwarding iii
2.2. Logging database activity iv
2.3. Replicating sequences vi
2.4. The node daemon vii
2.4.1. Splitting the logdata vii
2.4.2. Exchanging messages viii
2.4.3. Confirming events ix
2.4.4. Cleaning up . ix
2.4.5. Replicating data x
2.4.6. Subscribing a set xii
2.4.7. Store and archive xiii
2.4.8. Provider change and failover xiv
3. Acknowledgements xv

Slony-I -i- Version 1.0

1. Design goals

This chapter gives a brief overview about the principle design goals that will
be met in final product.

The big picture for the development of Slony-I is to build a master-slave
system that includes all features and capabilities needed to replicate large data-
bases to a reasonably limited number of slave systems. The analysis of existing
replication systems for PostgreSQL has shown that it is literally impossible to add
a fundamental feature to an existing replication system if that feature was not
planned in the initial design.

The core capabilites defined in this chapter might not all get fully imple-
mented in the first release. They how ever need to be an integral par t of the meta-
data and administrative str uctures of the system to be added later with minimal
impact to a running system.

The number of different replication solutions available supports the theory
that "one size fits all" is not true when it comes to database replication. Slony-I is
planned as a system for data centers and backup sites, where the normal mode
of operation is that all nodes are available. Extended periods of downtime will
require to remove or deactivate the node in question in the configuration. Neither
offline nodes that only become available sporadic for synchronization (the sales-
man on the road) nor multimaster or synchronous replication will be supported
and are subject to a future member of the Slony family.

1.1. Master to multiple cascaded slaves

The basic structure of the systems combined in a Slony-I installation is a
master with one or more slaves nodes. Not all slave nodes must receive the repli-
cation data directly from the master. Every node that receives the data from a
valid source can be configured to be able to forward that data to other nodes.

There are three distinct ideas behind this capability. The first is scalability.
One database, especially the master that receives all the update transactions
from the client applications, has only a limited capability to satisfy the slave
nodes queries during the replication process. In order to satisfy the need for a big
number of read-only slave systems it must be possible to cascade.

The second idea is to limit the required networ k bandwidth for a backup site
while keeping the ability to have multiple slaves at the remote location.

The third idea is to be able to configure failover scenar ios. In a master to
multiple slave configuration, it is unlikely that all slave nodes are exactly in the
same synchronization status when the master fails. To ensure that one slave can
be promoted to the master it is necessary that all remaining systems can agree
on the status of the data. Since a committed transaction cannot be rolled back,
this status is undoubtly the most recent sync status of all remaining slave nodes.
The delta between this one and every other node must be easily and fast gener-
ated and applied at least to the new master (if that’s not the same system) before
the promotion can occur.

Slony-I -ii- Version 1.0

1.2. Hot installation and configuration

It must be possible to install and uninstall the entire replication system on a
running production database system without stopping the client application. This
includes creating the initial configuration on the master system, configuring one
or more slaves, copying the data and catching up to a full running master-slave
status.

Changing the configuration also includes that a cascaded slave node can
change its data provider on the fly. Especially for the failover scenar io mentioned
in the for mer section it is important to have the ability to promote one of the first
level slaves to the master, redirect the other first level slaves to replicate from the
new master and lower the wor kload on the new master by redirecting some or all
of its cascaded slaves to replicate from another first level slave .

Hot installation and configuration change is further the only way to guaran-
tee the ability to upgrade the replication software itself to a new version that is
incompatible with the existing one in its metadata.

Even if this is given, upgrading the slaves will not wor k without interrupting
the slave . What will be provided at least is the ability to install a new version in
parallel to the old one, so that a new slave can be created and started before an
existing one gets removed from the system.

1.3. Database schema c hang es

Replicating schema changes is an often discussed problem and only ver y
fe w database systems provide the necessary hooks to implement it. PostgreSQL
does not provide the ability to define triggers called on schema changes, so a
transparent way to replicate schema changes is not possible without substantial
work in the core PostgreSQL system.

Moreover, ver y often database schema chages are not single, isolated DDL
statements that can occur at any time within a running system. Instead they tend
to be groups of DDL and DML statements that modify multiple database objects
and do mass data manipulation like updating a new column to its initial value.

The Slony-I replication system will have a mechanism to execute SQL
scr ipts in a controlled fashion as part of the replication process.

1.4. Multiple database versions

To aid in the process of upgrading from one database version to another,
the system must be able to replicate between different PostgreSQL versions.

A database upgrade of the master must be doable by failing over to a slave .
A pure asynchronous master slave system like Slony-I will never be able to pro-
vide the ability to failover with zero transaction loss. True failover with zero loss of
committed transactions is only possible with synchronous replication and will not
be supported by Slony-I. Therefore, this administrative forced failover for the pur-
pose of changing the master will need brief interruption of the client application to
let the slave system catch up and become the master before the client resumes
work, now against the promoted new master.

Slony-I -iii- Version 1.0

1.5. Backup and point in time reco ver y

It is not necessarily obvious why backup and recovery is a topic for a repli-
cation system. The reason why it is subject to the design of Slony-I is that the
PostgreSQL database system lacks any point in time recovery and a system
design that covers failover would be incomplete without covering an application
fault corrupting the data.

The technical design presented later in this document will make it relatively
easy to use one or more slave systems for backup purposes. In addition it will be
possible to configure single slaves with or without cascaded slaves to apply repli-
cation data after a delay. In high availability scenarios there is usually no time to
restore a backup and do a point in time recovery. The affordable backup media
are just not fast enough. A slave that applies the replication data with a 1 hour
delay can be promoted to the master at logically any point in time within the past
60 minutes. Provided at least one other node (the master or any other node that
does not replicate with a delay) has the log infor mation for the last hour and is
available, the backup node can be instructed to catchup until a specific point in
time and then be promoted to the master. Assuming that the node can replicate
faster than the master was able to wor k (how does it keep up otherwise), this
would take less time than the delay it had.

2. Technical o ver vie w

This chapter explains the components and the logical operation of Slony-I.

2.1. Nodes, Sets and forwarding

The Slony-I replication system can replicate tables and sequence numbers.
Replicating sequence numbers is not unproblematic and is discussed in more
detail in section 2.3.

Table and sequence objects are logically grouped into sets. Every set
should contain a group of objects that is independant from other objects originat-
ing from the same master. In shor t, all tables that have relationships that could
be expressed as foreign key constraints and all the sequences used to generate
any ser ial numbers in these tables should be contained in one and the same set.

Slony-I -iv- Version 1.0

Figure 1

Node A Node B

Node C

Set 1
Or igin

Set 1
Subscr ibed

Set 1
Subscr ibed

Set 2
Or igin

Set 2
Subscr ibed

Figure 1 illustrates a replication configuration that has 2 data sets with dif-
ferent origins. To replicate both date sets to NodeC it is not required that Node C
really communicates with the origin of Set 1. This scenario has full redundancy
for every node. Obviously if Node C fails, the masters of Set 1 and Set2 are still
alive, no problem. If Node A fails, Node B can get promoted to the master of both
sets. The tricky situation is if Node B fails.

In the case Node B fails, Node C needs to get promoted to the master of
Set 2 and it must continue replicating Set 1 from Node A. For that to be possible,
Node A must have knowledge about Node C and its subscription to Set 1. Gener-
ally speaking, every node that stores replication log infor mation must keep it until
all subscribers of the affected set are known to have replicated that data.

To simplify the logic, the configuration of the whole networ k with all nodes,
sets and subscriptions will be forwarded to and stored on all nodes. Because the
sets, a node is not subscribed to must not even exist in its database, this does
not include the infor mation about what tables and sequences are included in any
specific set.

2.2. Log ging database activity

Slony-I will be an AFTER ROW trigger based replication system that analy-
ses the NEW and OLD rows to reconstruct the meaningful pieces of an SQL
statement representing the change to the actual data row. To identify a row in the
log, the table must have some UNIQUE constraint. This can be a compound key
of any data types. If there is none at all, the Slony-I installation process needs to
add an int8 column to the table. Unmodified fields in an UPDATE event will not
be included in the statement. Some analysis of existing replication methods has
shown that despite the increase of log infor mation that must be stored during
replication cycles, this technology has several advantages over a system that
holds infor mation about which application tables need to be replicated, but will

Slony-I -v- Version 1.0

fetch the latest value at the time of replication from the current row.

Stability: There are possible duplicate key conflicts that are not easy solvable
when losing history infor mation. The simplest case to demonstrate is a
unique field where two rows swap their value like

UPDATE table SET col = ’temp’ WHERE col = ’A’;
UPDATE table SET col = ’A’ WHERE col = ’B’;
UPDATE table SET col = ’B’ WHERE col = ’temp’;

Without doing the extra step over the ’temp’ value, there is no order in
which the replication engine can replicate these updates.

Splitting: Slony-I will split the entire amount of replication activity into smaller
units covering a few seconds of wor kload as described in section 2.4.1.
This will be done on the visibility boundaries of two ser ializable trans-
actions. So the slave systems will leap from one consistent state to
another as if multiple master transactions would have been done at
once. Without history infor mation this is not possible and the slave only
has the chance to jump from its last sync point to now. If it was stopped
for a while for whatever reason, it must catch up in one big transaction
covering the whole wor k done on the master in the meantime, increas-
ing the duplicate key risk mentioned above .

The point in time standby capability via delayed application of replica-
tion data, described in 1.5., needs this splitting as well.

Failover: While it is relatively easy to tell in a master to multiple slave scenar io
which of the slaves is most recent at the time the master fails, it is
near ly impossible to tell the actual row delta between two slaves. So in
the case of a failing master, one slave can be promoted to the master,
but all other slaves need to be re-synchronized with the new master.

Perfor mance:
Stor ing the logging infor mation in one or ver y fe w rotating log tables
means that the replication engine can retrieve the actual data for one
replication step with ver y fe w quer ies that select from one table only. In
contrast to that a system that fetches the current values from the appli-
cation tables at replication time needs to issue the same number of
quer ies per replicated tab le and these queries will be joining the log
table(s) with the application data table. It is obvious that this systems
perfor mance will be reverse proportional to the number of replicated
tables. At some time the complete delta to be applied, which can not
be split as pointed out already, will cause the PostgreSQL database
system to require less optimal than in memory hash join query plans to
deal with the number of rows returned by these queries and the repli-
cation system will be unable to ever catch up unless the wor kload on
the master drops significantly.

The log will under normal circumstances be collected in one log table,
deleted from there periodically and the table vacuumed (see section 2.4.4.). A
reasonably large table with sufficient freespace has a better perfor mance on

Slony-I -vi- Version 1.0

INSERT operations than an empty table that gets only extended at the end. This
is because the free space handling in PostgreSQL allows multiple backends to
simultaneously add new tuples to different blocks. Also extending a table at the
end is more expensive than reusing existing blocks as those blocks can never be
found in the cache and need filesystem metadata changes in the OS due to
increasing the file size. A log switching mechanism to another table will be pro-
vided for the case that a log table had once grown out of reasonable size, so that
it is possible to shrink it without doing a VACUUM FULL which would cause an
exclusive lock on the table, effectively stopping the client application.

Each log row will contain the current transaction ID, the local node ID, the
affected table ID, a log action sequence number and the infor mation required to
reconstr uct the SQL statement that can cause the same modification on a slave
system. Since the action sequence is allocated in an AFTER ROW trigger, its
ascending order is automatically an order that is not in conflict with the order in
which concurrent updates happened to the base tables. It is not necessarily the
exact same order in which the updates really occured, and it is for sure not the
order in which those updates became visible or in other words their transactions
committed. But statements executed in this order within logically ascending
groups of transactions, grouped by the order in which they became visible, will
lead to the exact same result. This order is called agreeable order.

2.3. Replicating sequences

Sequence number generators in PostgreSQL are highly optimized for con-
currency. Because of that they only guarantee not to generate duplicate ID’s.
They do not roll back and can therefore generate gaps. Another problem is that
tr iggers cannot be defined on sequence numbers.

Since sequences in PostgreSQL are 64 bit integers, it would be quite possi-
ble to split the entire available number range into multiple segments and assign
each node that will eventually be promoted to the master its own unique range.
This way, sequences can be simply ignored during the replication process. The
drawback is that they cannot be ignored in the backup/restore process and the
risk of restoring the wrong backup without re- adjusting the sequences is high.

Another possibility is to use a user defined function and effectively replace
sequences by a row held in a replicated table, destroying thus the concurrency
and making sequences a major bottleneck in the entire client application.

Yet another approach seen is not to replicate sequences, but to adjust them
at the time a slave would be promoted to master. This requires at least one full
table scan on every table that contains sequence generated values and can
mean a significant delay in the failover process.

The approach Slony-I will take is a different one. The standard function that
generates sequence numbers, nextval(), as well as setval(), will be moved out of
the way by creating a new pg_proc catalog entry with another name and Oid for
it. Their places will be taken by new custom functions that will call the original
nextval() or setval() function and then check the configuration table if the
sequence is replicated. In the case of sequence replication, the function will

Slony-I -vii- Version 1.0

inser t a replication action row into the log table. Since no updates are ever done
to the log table and the cleanup process only removes log entries that are in the
past, this will not block concurrent transactions from allocating sequences. The
fact that an aborted transaction will loose the allocated sequence can be ignored
because it will be skipped on the next allocation anyway.

The slave must be carefull during the replication not to adjust the sequence
number backwards, because the side effect that guarantees the agreeable order
of action record sequences, the row lock on the applications table, does not exist
for sequences. The allocation of sequence numbers happens logically at a time
ev en before a BEFORE ROW trigger would fire and inside of our replacement
nextval() function there is a race condition (the gap between calling the original
nextval() and inserting the log record) that we do not want to serialize for concur-
rency reasons.

2.4. The node daemon

In Slony-I ev ery database that participates in a replication system is a node.
Databases need not necessarily reside on different servers or even be ser ved by
different postmasters. Two different databases are two different nodes.

For each database in the replication system, a node daemon called Slon is
star ted. This daemon is the replication engine itself and consists of one hybr id
program with master and slave functionality. The differentiation between master
and slave is not really appropriate in Slony-I anyway since the role of a node is
only defined on the set level, not on the database level. Slon has the following
duties.

2.4.1. Splitting the logdata

Splitting the logdata into groups of logically ascending transactions is much
easier than someone might imagine. The Slony-I daemon will check in a config-
urable timeout if the log action sequence number of the local node has changed
and if so, it will generate a SYNC event. All events generated by a system are
generated in a serializable transaction and lock one object. It is thus guaranteed
that their event sequence is the exact order in which they are generated and
committed.

An event contains among the message code and its payload infor mation
the entire serializable snapshot infor mation of the transaction, that created this
ev ent. All transactions that committed between any two ascending SYNC events
can thus be defined as

SELECT xid FROM logtable
WHERE (xid > sync1_maxxid OR

(xid >= sync1_minxid AND xid IN (sync1_xip)))
AND (xid < sync2_minxid OR

(xid <= sync2_maxxid AND xid NOT IN (sync2_xip)));

The real query used in the activity described in section 2.4.5. is far more compli-
cated. Yet the general principle is this simple and after all, the daemon on the

Slony-I -viii- Version 1.0

local node only checks the local log action sequence, inser ts a row and gener-
ates a notification if the sequence has changed.

2.4.2. Exchanging messa ges

All configuration changes like adding nodes, subscr ibing or unsubscribing
sets, adding a table to a set and so for th are communicated through the system
as events. An event is generated by inser ting the event infor mation into a table
and notifying all listeners on the same. SYNC messages are communicated with
the same mechanism.

The Slony-I system configuration contains infor mation for every node which
other it will query for which events.

Figure 2

Node A Node B

Node C

Node D

Node E

A C D E

B

A BC D E

A B C ED

A B C D

E

Figure 2 illustrates the event flow in a configuration with 5 nodes, where
direct connections only exist between the following combinations of nodes.

NodeA <-> NodeB
NodeA <-> NodeC
NodeC <-> NodeD
NodeC <-> NodeE

Ever y daemon establishes remote database connections to the nodes, from
where it receives events (which as shown in figure 2 is not necessarily the event
or igin). The daemons use the PostgreSQL LISTEN/NOTIFY mechanism to infor m
each other about event generation.

When receiving a new event, the daemon processes it and in the same
transaction, inserts it into its own event table. This way the event gets forwarded
and it is guaranteed, that all required data is stored and available on the forward-
ing node when the event arrives on the next receiver in the chain.

Slony-I -ix- Version 1.0

The fact that an event generated on node D or E will travel a while before it
is seen by node B is good. Events including SYNC messages are only important
for any node if it is subscribed to any set that originates on the same node, the
ev ent originates from.

We assume a data set originating on node A that is currently subscribed on
nodes B and C, both with forwarding enabled. This data set now should be sub-
scr ibed by node D. The actual subscribe event must be generated on node A, the
or igin of the data set, and travel within the flow of SYNC events to all subscribers
of the set. Otherwise, node B and C would not know at which logical point in time
node D subscribed the set and would not know that they need to keep replication
data for possible forwarding to D. When node D receives the event by looking at
node C’s event queue, it is guaranteed that C has processed all replication deltas
until the SYNC event prior to this subscribe event and that C currently knows that
D possibly needs all following delta’s resulting from future SYNC events.

Likewise will node B receive the subscribe message at the same logical
point in time within the event flow and know, that it from this moment on has to
keep delta infor mation for the case that node C might fail at any time, even before
it would be able to provide the current data snapshot or even the subscribe mes-
sage itself to D and D would be reconfigured to talk to B as a substiture provider.

As a side note, the configuration in figure 2 with a set originating on node A
is the ver y setup the author used during the development of the prototype. The
entire configuration can be installed and started while node A is constantly online
and write accessed by an application.

2.4.3. Confirming events

The majority of event types are configuration changes. The only exceptions
are SYNC and SUBSCRIBE events covered more detailed in sections 2.4.5. and
2.4.6.

Configuration chage events carry all necessary infor mation to modify the
local configuration infor mation in the event data row. Processing consists more
or less of storing or deleting a row in one of the Slony-I control tables.

In the same transaction the local node daemon processes the event, he will
inser t a confir mation row into a local table that matches the events origin, the
ev ent sequence number and the local node ID.

Reverse to the event deliver y mechanism, the daemon will now inser t the
same confirmation row into the confirmation table of every remote node it is con-
nected to, and NOTIFY on that table. The remote node daemon will LISTEN on
that table, pick up any new confir mation rows and propagate them through the
networ k. This way, all nodes in the cluster will get to know that the local node has
successfully processed the event.

2.4.4. Cleaning up

So far we have generated may events, confir mations and (hopefully) even
more transaction log data. Needless to say that we need to get rid of all that after

Slony-I -x- Version 1.0

a while. Per iodically the node daemon will clean up the event, confirm and log
tables. This is done in two steps.

1. The confir mation data is condensed. Since all nodes process all events per
or igin in ascending order, we only need the row with the highest event
sequence number per <origin,receiver>.

2. Old ev ent and log data is removed. As we will see in section 2.4.5. we
need to keep the last SYNC event per origin. Thus we select the SYNC
ev ent with the smallest event sequence per origin, that is not yet confirmed
by all other nodes in the cluster and loop over that result set. Per SYNC
found we remove all older events from that origin and all log data from that
or igin that would be visible according to the snapshot infor mation in the
SYNC.

For the case that large volumes of log data once accumulated a log switch-
ing mechanism will be provided on a per node base. This is required since the
only other way to reclaim the disk space would be a full vacuum, which grabs an
exclusive lock on the table, thus effectively stopping the client application. After
enter ing the switching mode, the triggers and functions inserting into the log table
will start using an alterate table. While the node is in the switching mode, the log
data is logically the union between the two log tables. When the cleanup process
detects that the old log table is empty, it ends the log switching mode, waits until
all transactions that could possibly have seen the system in switching mode have
ended and truncates the old log table.

2.4.5. Replicating data

Upon receiving a remote SYNC the node checks if it is actually subscribed
to any set originating on the node that generated the event. If it is not, it simply
confir ms the event like any other and is done with it. All other nodes do not need
to keep the log data (at least not for this node) because it will never ask for log
infor mation pr ior to this SYNC event.

If it is subscribed to one or more sets from that origin, the actual replication
works in the following steps.

1. The node checks that it has connections to all remote nodes that provide
forward infor mation for any set that is subscribed from the SYNC events ori-
gin.

Slony-I -xi- Version 1.0

Figure 3

Node A Node B

Node C Node D

Set 1
Or igin

Set 1
Subscr ibed

Set 1
Subscr ibed

Set 2
Or igin

Set 2
Subscr ibed

Set 2
Subscr ibed

Figure 3 illustrates a scenario where node B is configured to replicate only
set 1. Likewise is node C configured to replicate only set 2. For reporting
pur poses node D is subscribed to both sets, but to keep the wor kload on
the primar y node A as low as possible, it replicates set 1 from node B and
set 2 from node C.

Despite of this distributed data path, the SYNC event generated on node A
is meant for both sets and all the log data for both sets that has accumu-
lated since the last SYNC event must be applied to node D in one transac-
tion. Thus, node D can only proceed and start replicating if both nodes have
already finished applying the SYNC event.

2. What the node daemon does now consists logically of selecting a union of
the active log table of every remote node providing any set from the SYNC
ev ents origin in log action sequence order. The data selected is restricted
to the tables contained in all the sets provided by the specific node and
constrained to lay between the last and the actual SYNC event. In the
example of figure 3, node D would query node B like

Slony-I -xii- Version 1.0

SELECT * FROM log
WHERE log_origin = id_of_node A
AND log_tableid IN (list_of_tables_in_set_1)
AND (log_xid > last_maxxid OR

(log_xid >= last_minxid
AND log_xid IN (last_xip)))

AND (log_xid < sync_minxid OR
(log_xid <= sync_maxxid
AND log_xid NOT IN (sync_xip)))

ORDER BY log_origin, log_actionseq;

Well, at least for theory star ters. In practice because of the subscribe
process it will be an OR’d list of those qualifications per set, and during the
log switching of the queried node it will do this whole thing on a union
between both log tables. For tunately PostgreSQL has a sufficiently mature
quer y optimizer to recognize that this is still an index scan along the origin
and actionseq of the log table that does not need sorting.

3. All these remote result sets are now merged on the replicating node and
applied to the local database. Since they are coming in correct sorted, the
node can merge them on the fly with a one row lookahead. Triggers defined
on any replicated table will be disabled during the entire SYNC processing.
If there is a trigger defined on a table, it would be defined on the same table
on the set origin as well. All the actions perfor med by that trigger, as long
as they are actions that affect replicated tables, will get replicated as well.
So there is no need to execute the trigger on the slave again and depend-
ing on the trigger code, it could even lead to inconsistencies between the
master and the slave .

4. The SYNC event that caused all this trouble is stored as usual, the local
transaction committed and the confirmation sent out as for all other events.

2.4.6. Subscribing a set

Subscr ibing to a set is an operation that must be initiated at the origin of the
set. This is because Slony-I allows subscribing to sets that are actually in use on
their origin, the application is concurrently modifying the sets data. For larger
data sets it will take a while to create a snapshot copy of the data, and during that
time all nodes that are possible replication providers for the set must know that
there will be a new subscr iber maybe asking for log data in the future. Generat-
ing the SUBSCRIBE event on the sets origin guarantees that every node will
receive this event between the same two SYNC events coming from the origin of
the set. So they will all start preser ving the log data at the same point.

SUBSCRIBE events are a little special in that they must be received directly
from the node that is the log data provider for the set. This is because the log
data provider is the node from which the new subscr iber will copy the initial snap-
shot as well.

Slony-I -xiii- Version 1.0

When the SUBSCRIBE event is received from the correct node, the exact
procedure how to subscr ibe depends on whether the log data provider is the sets
or igin so the new subscr iber is a first level slave , or if is with respect to the set a
forwarding slave and the new node cascades from that.

1. For all tables that are in the set, the slave will query the table configuration
and store it locally. It will also create the replication trigger on all these
tables.

2. All tr iggers on the tables in the set get disabled to speed up the data copy
process and to avoid possible foreign key conflicts resulting from copying
the data in the wrong order or because of circular dependancies.

3. For each table it will use the PostgreSQL command COPY on both sides
and forward the data stream.

4. The tr iggers get restored.

5a. If the node we copied the data from is another slave (cascading), we have
just copied the entire set in exactly the state at the last visible SYNC event
from the sets origin inside of our current transaction. Whatever happened
after we star ted copying the set is invisible to this transaction yet. So the
local sets SYNC status is remembered as that and we are done.

5b. If the node we received the initial copy from is the sets origin, the problem is
that the set data does not "leap" from one SYNC point to another. In this
case we need to use the last SYNC event before the SUBSCRIBE event we
are currently processing plus all action sequences that we already see after
that last SYNC. We have copied the data rows with those actions applied
already, so when later on processing the next SYNC event, we have to
explicitly filter them out. This only applies to the first SYNC event that gets
created after subscribing to a new set directly from its origin.

6. As usual, the SUBSCRIBE event is stored local, the transaction committed
and the event processing confirmed.

2.4.7. Store and ar ch ive

In order to be able to cascade, the log data merged and applied in 2.4.5.
must also be stored in the local log data table. Since this happens in the same
transaction as inserting the SYNC event the log data was resulting from, every
cascading slave that receives this data will be able to see it exactly when he
receives the SYNC event, provided that the SYNC event was delivered by the
provider. The log data will get cleaned up together with eventually local gener-
ated log data for sets originating on this node. The process described in 2.4.4.
covers this already.

In addition to the cascading through store and forward, Slony-I will also be
able to provide a backup and point in time recovery mechanism. The local node
daemon knows exactly what the current SYNC status of its node is and it has the
ability to delay the replication of the next SYNC status long enough to start a
pg_dump and ensure that it has created its serializable transaction snapshot.
The resulting dump will be an exact representation of the database at the time

Slony-I -xiv- Version 1.0

the last SYNC event got committed locally. If it writes out files containing the
same queries that get applied for all subsequent SYNC events, these files
together will build a backup that can be restored with the same granular ity as
SYNC events are generated on the master.

2.4.8. Prov ider c hang e and failover

To store the log data on a node so configured until all nodes that subscribe
the set have confir med the corresponding SYNC events is the basis for on-the-fly
provider changes and failover.

Changing the log data provider means nothing else than starting at some
arbitrar y point in time (of course triggered and communicated with an event, what
else) to select the log data in 2.4.5. from another node that is either the master
or a slave that does store the data.

Failover is not much more than a logical sequence of syncing with other
nodes, changing the origin of sets and finally a provider change with a twist.

Figure 3

Node A Node B

Node C Node D

Set 1
Or igin

Set 1
Subscr ibed

(1. fails)

Set 1
Subscr ibed

Set 1
Subscr ibed

(1. fails)
(2. sync)

(3. origin)

1. Node A in figure 4 fails. It is the current origin of the data set 1. The plan is
to promote node B to the master and let node C continue to replicate
against the new master.

2. Since it is possible that node C at that time is more advanced in the replica-
tion than node B, node B first asks for every event (and the corresponding
log deltas for SYNC events) that it does not have itself yet. There is no real
difference in this action than replicating against node A.

3. At the time Node B is for sure equally or more advanced than Node C, it
takes over the set (becoming the origin). The twist in the provider change
that node C now has to do is, that until now it is not guaranteed that node C
has replicated all SYNC events from node A, that have been known to node
B. Thus, the ORIGIN event from node B will contain the last node A event

Slony-I -xv- Version 1.0

known by node B at that time, which must be the last node A event known
to the cluster at all. The twist in processing that ORIGIN event on node C is,
that it cannot be confirmed until node C has replicated all events from node
A until the one mentioned in the ORIGIN. At that time of course node C is
free to either continue to replicate using node B or D as its provider.

The whole failover process looks relatively simple at this point because it is
so simple. The entire Slony-I design pointed from the beginning into this direc-
tion, so it’s no real surpr ise. How ever, this simplicity comes at a price. The price
is, that if a (slave) node becomes unavailable, all other nodes in the cluster stop
cleaning up and accumulate event infor mation and possibly log data. So it is
impor tant that if a node becomes unavailable for a longer time, to change the
configuration and let the system know that other techniques will be used to reacti-
vate it. This can be done by suspending (deactivating) the node logically, or by
removing it from the configuration completely.

For a deactivated node there is still hope to catch up with the rest of the
cluster without re-joining from scratch. The point in time recovery delta files cre-
ated in 2.4.7. can be used to feed it infor mation that has been removed from the
log tables long ago. When the node is finished replaying that it is reactivated,
causing everyone else in the cluster to keep new log infor mation again for the
reactivated node. The reactivated node now again replays delta log files, eventu-
ally waiting for more to appear, until the one corresponding to the last known
SYNC event before its reactivation appears. It is back online now.

3. Ackno wledg ements

Some of the core principles of Slony-I are taken from another replication
solution that has been contributed to the PostgreSQL project. Namely the split-
ting of the continuous stream of log infor mation at a transaction boundary com-
patible with the serializable isolation level and the idea to be able to switch log
tables and how to do it exist ver y similar in eRServer, contr ibuted by PostgreSQL
INC.

